9/8/98 AC 43.13-1B

TABLE 7-1. Recommended torque values (inch-pounds).

THE	FOLLOWING TORQUE VALU	CAUTION ES ARE DERIVED FROM OIL I	FREE CADMIUM PLATED	THREADS.
		COMMENDED FOR INSTAL- DED PRIMARILY IN SHEAR)	MAXIMUM ALLOWATORQUE LIMITS	ABLE TIGHTENING
Thread Size	Tension type nuts MS20365 and AN310 (40,000 psi in bolts)	Shear type nuts MS20364 and AN320 (24,000 psi in bolts)	Nuts MS20365 and AN310 (90,000 psi in bolts)	Nuts MS20364 and AN320 (54,000 psi in bolts)
		FINE THREAD SERIES	,	,
8-36 10-32 1/4-28 5/16-24 3/8-24 7/16-20 1/2-20 9/16-18 5/8-18 3/4-16 7/8-14 1-14 1-1/8-12	12-15 20-25 50-70 100-140 160-190 450-500 480-690 800-1000 1100-1300 2300-2500 2500-3000 3700-5500 5000-7000 9000-11,000	7-9 12-15 30-40 60-85 95-110 270-300 290-410 480-600 600-780 1300-1500 1500-1800 2200-3300* 3000-4200* 5400-6600*	20 40 100 225 390 840 1100 1600 2400 5000 7000 10,000 15,000 25,000	12 25 60 140 240 500 660 960 1400 3000 4200 6000 9000 15,000
		COARSE THREAD SERIES		
8-32 10-24 1/4-20 5/16-18 3/8-16 7/16-14 1/2-13 9/16-12 5/8-11 3/4-10 7/8-9	12-15 20-25 40-50 80-90 160-185 235-255 400-480 500-700 700-900 1150-1600 2200-3000	7-9 12-15 25-30 48-55 95-100 140-155 240-290 300-420 420-540 700-950 1300-1800	20 35 75 160 275 475 880 1100 1500 2500 4600	12 21 45 100 170 280 520 650 900 1500 2700

The above torque values may be used for all cadmium-plated steel nuts of the fine or coarse thread series which have approximately equal number of threads and equal face bearing areas.

7-44. CLOSE-TOLERANCE BOLTS.

Close-tolerance, hex head, machine bolts (AN173 through AN186), 100-degree countersunk head, close-tolerance, high-strength bolts (NAS333 through NAS340), hex head, close-tolerance, short thread, titanium alloy bolts (NAS653 through NAS658), 100-degree countersunk flathead, close-tolerance titanium alloy bolts (NAS663 through NAS668), and drilled hex head close-tolerance titanium alloy bolts (NAS673 through NAS678), are used in applications where two parts bolted together are subject to severe load reversals and vibration. Because of the interference fit, this type

of bolt may require light tapping with a mallet to set the bolt shank into the bolt hole

NOTE: Elimination of friction in interference fit applications may sometimes be attained by placing the bolt in a freezer prior to installation. When this procedure is used, the bolt should be allowed to warm up to ambient temperature before torquing.

CAUTION: Caution must be exercised in the use of close-tolerance bolts for all critical applications, such as

^{*} Estimated corresponding values.

AC 43.13-1B 9/8/98

landing gear, control systems, and helicopter rotary controls. Do not substitute for close-tolerance fasteners without specific instructions from the aircraft manufacturer or the FAA.

- 7-45. INTERNAL WRENCHING BOLTS (NAS144 THROUGH NAS158 AND NAS172 THROUGH NAS176). These are high-strength bolts used primarily in tension applications. Use a special heat-treated washer (NAS143C) under the head to prevent the large radius of the shank from contacting only the sharp edge of the hole. Use a special heat-treated washer (NAS143) under the nut.
- 7-46. INTERNAL WRENCHING BOLTS (MS20004 THROUGH MS20024) AND SIX HOLE, DRILLED SOCKET HEAD BOLTS (AN148551 THROUGH AN149350). These are very similar to the bolts in paragraph 7-45, except these bolts are made from different alloys. The NAS144 through NAS158 and NAS172 through NAS176 are interchangeable with MS20004 through MS20024 in the same thread configuration and grip lengths. The AN148551 through AN149350 have been superseded by MS9088 through MS9094 with the exception of AN149251 through 149350, which has no superseding MS standard.
- 7-47. TWELVE POINT, EXTERNAL WRENCHING BOLTS, (NAS624 THROUGH NAS644). These bolts are used primarily in high-tensile, high-fatigue strength applications. The twelve point head, heat-resistant machine bolts (MS9033 through

MS9039), and drilled twelve point head machine bolts (MS9088 through MS9094), are similar to the (NAS624 through NAS644); but are made from different steel alloys, and their shanks have larger tolerances.

- **7-48.** CLOSE-TOLERANCE SHEAR BOLTS (NAS464). These bolts are designed for use where stresses normally are in shear only. These bolts have a shorter thread than bolts designed for torquing.
- **7-49. NAS6200 SERIES BOLTS.** These are close tolerance bolts and are available in two oversized diameters to fit slightly elongated holes. These bolts can be ordered with an "X" or "Y" after the length, to designate the oversized grip portion of the bolt (i.e., NAS6204-6X for a 1/4 inch bolt with a 1/64 inch larger diameter). The elongated hole may have to be reamed to insure a good fit.
- **7-50.** CLEVIS BOLTS (AN21 THROUGH AN36). These bolts are only used in applications subject to shear stress, and are often used as mechanical pins in control systems.
- **7-51. EYEBOLTS (AN42 THROUGH AN49).** These bolts are used in applications where external tension loads are to be applied. The head of this bolt is specially designed for the attachment of a turnbuckle, a clevis, or a cable shackle. The threaded shank may or may not be drilled for safetying.

7-52.—7-62. [RESERVED.]

9/8/98 AC 43.13-1B

SECTION 4. NUTS

- **7-63. GENERAL.** Aircraft nuts are available in a variety of shapes, sizes, and material strengths. The types of nuts used in aircraft structures include castle nuts, shear nuts, plain nuts, light hex nuts, checknuts, wingnuts, and sheet spring nuts. Many are available in either self-locking or nonself-locking style. Typical nut types are shown in table 7-13. Refer to the aircraft manufacturer's structural repair manual, the manufacturer's engineering department, or the FAA, before replacing any nut with any other type.
- **7-64. SELF-LOCKING NUTS.** These nuts are acceptable for use on certificated aircraft subject to the aircraft manufacturer's recommended practice sheets or specifications. Two types of self-locking nuts are currently in use, the all-metal type, and the fiber or nylon type.
- **a. DO NOT** use self-locking nuts on parts subject to rotation.
- **b.** Self-locking castellated nuts with cotter pins or lockwire may be used in any system.
- **c. Self-locking nuts** should not be used with bolts or screws on turbine engine airplanes in locations where the loose nut, bolt, washer, or screw could fall or be drawn into the engine air intake scoop.
- **d. Self-locking nuts** should not be used with bolts, screws, or studs to attach access panels or doors, or to assemble any parts that are routinely disassembled before, or after each flight. They may be used with anti-friction bearings and control pulleys, provided the inner race of the bearing is secured to the supporting structure by the nut and bolt.

- e. Metal locknuts are constructed with either the threads in the locking insert, out-of-round with the load-carrying section, or with a saw-cut insert with a pinched-in thread in the locking section. The locking action of the all-metal nut depends upon the resiliency of the metal when the locking section and load-carrying section are engaged by screw threads. Metal locknuts are primarily used in high temperature areas.
- f. Fiber or nylon locknuts are constructed with an unthreaded fiber or nylon locking insert held securely in place. The fiber or nylon insert provides the locking action because it has a smaller diameter than the nut. Fiber or nylon self-locking nuts are not installed in areas where temperatures exceed 250 °F. After the nut has been tightened, make sure the bolt or stud has at least one thread showing past the nut. DO NOT reuse a fiber or nylon locknut, if the nut cannot meet the minimum prevailing torque values. (See table 7-2.)
- g. Self-locking nut plates are produced in a variety of forms and materials for riveting or welding to aircraft structures or parts. Certain applications require the installation of self-locking nuts in channel arrangement permitting the attachment of many nuts in a row with only a few rivets.
- **7-65. NUT IDENTIFICATION FINISHES.** Several types of finishes are used on self-locking nuts. The particular type of finish is dependent on the application and temperature requirement. The most commonly used finishes are described briefly as follows.

AC 43.13-1B 9/8/98

TABLE 7-2. Minimum prevailing torque values for reused self-locking nuts.

FINE THREAD SERIES				
	MINIMUM PREVAILING			
THREAD SIZE	TORQUE			
7/16 - 20	8 inch-pounds			
1/2 - 20	10 inch-pounds			
9/16 - 18	13 inch-pounds			
5/8 -18	18 inch-pounds			
3/4 - 16	27 inch-pounds			
7/8 - 14	40 inch-pounds			
1 - 14	55 inch-pounds			
1-1/8 - 12	73 inch-pounds			
1-1/4 - 12	94 inch-pounds			
COARSE THREAD SERIES				
COARSE T	HREAD SERIES			
COARSE T	HREAD SERIES MINIMUM PREVAILING			
	MINIMUM PREVAILING			
THREAD SIZE	MINIMUM PREVAILING TORQUE			
THREAD SIZE 7/16 - 14	MINIMUM PREVAILING TORQUE 8 inch-pounds			
7/16 - 14 1/2 - 13	MINIMUM PREVAILING TORQUE 8 inch-pounds 10 inch-pounds			
7/16 - 14 1/2 - 13 9/16 - 12	MINIMUM PREVAILING TORQUE 8 inch-pounds 10 inch-pounds 14 inch-pounds			
7/16 - 14 1/2 - 13 9/16 - 12 5/8 - 11	MINIMUM PREVAILING TORQUE 8 inch-pounds 10 inch-pounds 14 inch-pounds 20 inch-pounds			
7/16 - 14 1/2 - 13 9/16 - 12 5/8 - 11 3/4 - 10	MINIMUM PREVAILING TORQUE 8 inch-pounds 10 inch-pounds 14 inch-pounds 20 inch-pounds 27 inch-pounds			
7/16 - 14 1/2 - 13 9/16 - 12 5/8 - 11 3/4 - 10 7/8 - 9	MINIMUM PREVAILING TORQUE 8 inch-pounds 10 inch-pounds 14 inch-pounds 20 inch-pounds 27 inch-pounds 40 inch-pounds			

- **a. Cadmium-Plating.** This is an electrolytically deposited silver-gray plating which provides exceptionally good protection against corrosion, particularly in salty atmosphere, but is not recommended in applications where the temperature exceeds 450 °F. The following additional finishes or refinements to the basic cadmium can be applied.
- (1) Chromic Clear Dip. Cadmium surfaces are passivated, and cyanide from the plating solution is neutralized. The protective film formed gives a bright, shiny appearance, and resists staining and finger marks.
- (2) Olive Drab Dichromate. Cadmiumplated work is dipped in a solution of chromic acid, nitric acid, acetic acid, and a dye which produces corrosion resistance.

(3) Iridescent Dichromate. Cadmiumplated work is dipped in a solution of sodium dichromate and takes on a surface film of basic chromium chromate which resists corrosion. Finish is yellow to brown in color.

NOTE: Cadmium-plated nuts are restricted for use in temperatures not to exceed 450 °F. When used in temperatures in excess of 450 °F, the cadmium will diffuse into the base material causing it to become very brittle and subject to early failure.

- **b. Silver plating.** Silver plating is applied to locknuts for use at higher temperatures. Important advantages are its resistance to extreme heat (1,400 °F) and its excellent lubricating characteristics. Silver resists galling and seizing of mating parts when subjected to heat or heavy pressure.
- **c. Anodizing for Aluminum.** An inorganic oxide coating is formed on the metal by connecting the metals and anodes in a suitable electrolyte. The coating offers excellent corrosion resistance and can be dyed in a number of colors.
- d. Solid Lubricant Coating. Locknuts are also furnished with molybdenum disulfide for lubrication purposes. It provides a clean, dry, permanently-bonded coating to prevent seizing and galling of threads. Molybdenum disulfide is applied to both cadmium and silver-plated parts. Other types of finishes are available, but the finishes described in this chapter are the most widely used.
- **7-66. CASTLE NUT (AN310).** The castle nut is used with drilled shank hex head bolts, clevis bolts, drilled head bolts, or studs that are subjected to tension loads. The nut has slots or castellations cut to accommodate a cotter pin or safety wire as a means of safetying.

9/8/98 AC 43.13-1B

7-67. CASTELLATED SHEAR NUT (AN320). The castellated shear nut is designed for use with hardware subjected to shear stress only.

7-68. PLAIN NUT (AN315 AND AN335).

The plain nut is capable of withstanding large tension loads; however, it requires an auxiliary locking device, such as a checknut or safety wire. Use of this type on aircraft structures is limited.

7-69. LIGHT HEX NUTS (AN340 AND AN345). These nuts are used in nonstructural applications requiring light tension. Like the AN315 and AN335, they require a locking device to secure them.

7-70. CHECKNUT (**AN316**). The checknut is used as a locking device for plain nuts, screws, threaded rod ends, and other devices.

7-71. WINGNUTS (**AN350**). The wingnut is used where the desired torque is obtained by use of the fingers or handtools. Wingnuts are normally drilled to allow safetying with safety wire

7-72. SHEET SPRING NUTS (**AN365**). Sheet spring nuts are commonly called speed nuts. They are used with standard and sheet metal self-tapping screws in nonstructural applications. They are used to support line and conduit clamps, access doors, etc. Their use should be limited to applications where they were originally used in assembly of the aircraft.

7-73.—7-84. RESERVED.