

AVIATION MAINTENANCE TECHNICIAN CERTIFICATION SERIES

PISTON ENGINE

16

The publishers of this Aviation Maintenance Technician Certification Series welcome you to the world of aviation maintenance. For additional educational tools created to prepare candidates for licensure, contact Aircraft Technical Book Company.

We wish you good luck and success in your studies and in your aviation career!

EASA CAT-A TEXTBOOKS ARE AVAILABLE IN EBOOK DOWNLOAD, OR ONLINE READER

Special thanks to our instructors, contributors, and authors Contributor - Charles L. Rodriguez

Layout and Design by Michael Amrine

VERSION	EFFECTIVE DATE
005	2025.03

Copyright © 2016, 2025 — Aircraft Technical Book Company. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

To order books or for customer service, please call +1 (970) 726-5111, or visit us online at www.actechbooks.com

Page ii Piston Engine

Update notices for this book will be available online at www.actechbooks.com/revisions.html
If you would like to be notified when changes occur, please join our mailing list at www.actechbooks.com

VERSION	EFFECTIVE DATE	DESCRIPTION OF REVISION(S)
001	2019.04	Module creation and release.
002	2017.02	Format updates and minor type corrections.
003	2020.06	Realignment to Part-66 Appendices. Enhanced figures throughout entire textbook
004	2023.01	Major rewrite and formatting updates. Acronym updates and inclusion of Measurement Standards page.
004.1	2023.04	Minor appearance and format updates.
005	2025.03	Regulatory update for EASA 2023-989 compliance.

Module was reorganized based upon the EASA 2023-989 subject criteria. Enhancements included in this version 004 are:

- 16.1 Otto Engine topic added.
- 16.8 Properties and Specifications of Standard, Alternate, and Drop in Fuel topic added.
- $16.13\ \textit{Engine Storage and Preservation} Submodule\ removed\ per\ 2023-989\ requirements.$
- 16.14 Hybrid and Electric Power Augmentation topic added.

PISTON ENGINE	Mixtures/Leaning; Preignition	2.5
Revision Log iii	Mixtures	
Measurement Standards iv	Fuel/Air Mixtures	2.
Basic Knowledge Requirements	Detonation	2.6
Part 66 Basic Knowledge Requirements vi	Preignition	2.0
Table of Contentsix	Submodule 2 Practice Questions	2.
	Submodule 2 Practice Answers	2.5
16.1 FUNDAMENTALS1.1		
Mechanical Efficiency	16.3 ENGINE CONSTRUCTION	3.
Thermal Efficiency1.1	Crankcase, Crankshaft, Camshaft, And Sump	3.1
Volumetric Efficiency	Crankcase Sections	3.
Propulsive Efficiency	Crankshafts	3.3
Fundamental Reciprocating Engine Operating Principles1.2	Camshaft	3.4
Four Stroke Cycle	Sumps	3.4
Intake Stroke	Accessory Section	3.5
Compression Stroke	Accessory Gear Trains	
Power Stroke	Cylinder And Piston Assemblies	
Exhaust Stroke1.4	Cylinders	
Two Stroke Cycle	Cylinder Heads	
Otto Engines	Cylinder Barrels	
Rotary Cycle	Pistons	
Diesel Cycle	Piston Construction	
Piston Displacement And Compression Ratio	Piston Pins	
Piston Displacement	Piston Ring Construction	
Compression Ratio	Compression Ring	
Engine Configuration And Firing Order 1.6	Oil Control Rings	
Engine Configuration	Oil Scraper Ring	
Inline Engines	Connecting Rods	
Opposed Or O-Type Engines	Plain-Type Connecting Rods	
V Type Engines	Fork-and-Blade Rod Assembly	
Radial Engines. 1.8	Master, Articulated, And Split Type Rod Assemblies	
Firing Order	Knuckle Pins	
Submodule 1 Practice Questions	Inlet And Exhaust Manifolds	
Submodule 1 Practice Questions 1.30 Submodule 1 Practice Answers 1.10	Induction Systems	
Submodule 1 Fractice Aliswers	Reciprocating Engine Exhaust Systems	
16.2 ENGINE PERFORMANCE2.1	Radial Engine Exhaust Collector Ring System	
Power Calculation And Measurement	Valve Mechanisms	
Work	Valve Construction	
Horsepower	Valve Operating Mechanism	
Indicated Horsepower	Cam Rings	
Brake Horsepower	Tappet Assembly	
	Solid Lifter Tappets	
Thrust Horsepower	Hydraulic Valve Tappets/Lifters	
Factors Affecting Engine Power	Rocker Arms	
Nature's Variables To Engine Performance	Push Rod	
Ambient Pressure	Valve Springs	
Temperature	Propeller Reduction Gear	
Humidity	Propeller Shafts	
Mechanical Issues Affecting Performance	Submodule 3 Practice Questions	
Ignition Problems	Submodule 3 Practice Answers	3.19
Internal Magneto Timing	40.4 5110115 51151 0:25	_
Magneto To Engine Timing	16.4 ENGINE FUEL SYSTEMS	
Other Ignition Problems	Fuel Metering Devices for Reciprocating Engines	
Fuel Metering Issues	Fuel/Air Mixtures	
Exhaust System	Section 4.1	4.2
Compression	Venturi Principles	4.2

Application of Venturi Principle to Carburetor 4.2	Low And High Tension Systems	. 5.12
Metering And Discharge Of Fuel	Single And Dual High-Tension System Magnetos	. 5.12
Carburetor Systems	Magneto Mounting Systems	. 5.12
Float-Type Carburetors	High and Low-Tension Magneto Systems	. 5.12
Float Chamber Mechanism System 4.4	Limited Authority Spark Advance Regulator (LASAR)	. 5.14
Main Metering System	FADEC System Description	
Idling System	Low-Voltage Harness	. 5.14
Accelerating System4.7	Electronic Control Unit (ECU)	
Economizer System	PowerLink Ignition System	
Pressure Injection Carburetors	Auxiliary Ignition Units	
Typical Injection Carburetor	Booster Coil	
Throttle Body	High-Tension Retard Breaker Vibrator	
Fuel Control Unit	Impulse Coupling	
Automatic Mixture Control (AMC)	Ignition System Maintenance And Inspection	
Carburetor Icing	Magneto Ignition Timing Devices	
Section 4.2	Built In Engine Timing Reference Marks	
Fuel Injection Systems	Piston Position Indicators	
Bendix/Precision Fuel Injection System	Timing Lights	
Fuel Injector	Checking the Internal Timing	
Airflow Section	Timing the High-tension Magneto to the Engine	
Regulator Section 4.11	Ignition Switch Check	
Fuel Metering Section	Maintenance and Inspection of Ignition Leads	
Flow Divider	Spark Plug Inspection and Maintenance	
Fuel Discharge Nozzles	Carbon Fouling of Spark Plugs	
Continental/TCM Fuel Injection System 4.13	Oil Fouling of Spark Plugs	
Fuel Injection Pump		
Fuel/Air Control Unit	Lead Fouling of Spark Plugs	
	Graphite Fouling of Spark Plugs	
Fuel Control Assembly	Gap Erosion of Spark Plugs.	
Fuel Manifold Valve	Spark Plug Removal.	
Fuel Discharge Nozzle	Spark Plug Reconditioning Service	
Section 4.3	Inspection Prior to Installation	
Systems Layout and Components	Spark Plug Installation	
Low Voltage Harness	Spark Plug Lead Installation	
Electronic Control Unit (ECU)	Breaker Point Inspection	
Submodule 4 Practice Questions	Dielectric Inspection	
Submodule 4 Practice Answers	Ignition Harness Maintenance	
10 C CTARTING AND IGNITION CVCTCMC	High-Tension Ignition Harness Faults	
16.5 STARTING AND IGNITION SYSTEMS5.1	Harness Testing	
Starting Systems	Submodule 5 Practice Questions	
Inertia Starters	Submodule 5 Practice Answers	. 5.30
Direct Cranking Electric Starters	40 C INDUCTION EVILATION AND COOLING OVOTENO	
Direct Cranking for Large Reciprocating Engines 5.2	16.6 INDUCTION, EXHAUST, AND COOLING SYSTEMS	
Direct Crank Starters for Small Aircraft	Induction Systems	
Preheat Systems	Basic Carburetor Induction System	
Starting System Maintenance Practices	Induction System Filtering	
Magneto Systems And Operation	Carburetor Heat Systems	
Operating Principles	Carburetor Heat System Operational Check	
Theory Of Operation	Induction System Inspection And Maintenance	
The Magnetic Circuit	Induction System Troubleshooting	
The Primary Electrical Circuit	Exhaust Systems	
The Secondary Electrical Circuit	Radial Engine Exhaust Collector Ring System	
Magneto And Distributor Venting 5.9	Exhaust System Maintenance Practices	6.5
Ignition Harnesses, Spark Plugs 5.10	Exhaust System Inspection	6.5
Ignition Harnesses	Muffler And Heat Exchanger Failures	6.6
Ignition Switches	Exhaust Manifold And Stack Failures	6.6
Speeds Dlugge 5 11	Internal Muffler Failures	66

Exhaust Systems With Turbochargers	Submodule 8 Practice Answers
Augmentor Exhaust System	16.9 LUBRICATION SYSTEMS9.1
Engine Cooling Systems 6.7	Engine Lubrication Systems
Engine Cooling System Maintenance	Combination Splash And Pressure Lubrication 9.1
Maintenance of Engine Cowling 6.10	Lubrication System Requirements
Engine Cylinder Cooling Fin Inspection 6.11	Dry Sump Oil Systems
Cylinder Baffle And Deflector Inspection	Oil Tanks
Submodule 6 Practice Questions 6.13	Oil Pump
Submodule 6 Practice Answers 6.14	Oil Filters. 9.3
Submodule of factice Hilsweis	Oil Pressure Regulating Valve9.4
16.7 SUPERCHARGING AND TURBOCHARGING7.1	Oil Cooler
Principles Of Supercharging	Oil Cooler Flow Control Valve
Supercharged Induction Systems	Surge Protection Valves
Construction And Operation Of Supercharging, And	Airflow Controls 9.6
Turbocharging Systems	Dry Sump System Operation9.6
Internally Driven Superchargers 7.1	Wet Sump Oil Systems
Turbochargers	Lubrication System Maintenance Practices
Normalizer Turbocharger	Oil Tank
Ground-Boosted Turbocharger System	Oil Cooler
A Typical Turbocharger System	Oil Temperature Bulbs
Turbocharger Controllers	Pressure And Scavenge Oil Screens
Variable Absolute Pressure Controller (VAPC) 7.9	Oil Pressure Relief Valves
Sloped Controller	Recommendations for Changing Oil
Absolute Pressure Controller	Draining Oil
Turbocharger System Troubleshooting 7.9	Oil And Filter Change And Screen Cleaning 9.10
Submodule 7 Practice Questions 7.11	Oil Filter Removal9.11
Submodule 7 Practice Answers 7.12	Oil Filter/Screen Content Inspection 9.11
	Assembly Of And Installation Of Oil Filters 9.12
16.8 LUBRICANTS AND FUELS8.1	Oil Analysis
Properties And Specifications Of Fuel 8.1	Submodule 9 Practice Questions
Octane Rating	Submodule 9 Practice Answers
Volatility And Vapor Pressure 8.1	
Fuel Identification 8.1	16.10 ENGINE INDICATION SYSTEMS10.1
Fuel Purity	Engine Instrumentation
Alternate Fuel And Drop-In Fuel	Typical Instrument Markings
Lubricant Properties And Specifications	Engine Instruments
Functions of Lubricants 8.2	Tachometer
Reducing Friction	Tachometer Check
Serving As A Cushion	Manifold Pressure Gauge
Enhancing Sealing Between Parts 8.3	Torquemeter
Transferring Heat For Engine Cooling8.3	Exhaust Gas Temperature
Cleaning The Interior Of The Engine 8.3	Cylinder Head Temperature
Serving As A Hydraulic Fluid8.3	Coolant Temperature
Minimizing Corrosion	Oil Pressure Gauge
Requirements and Characteristics of Reciprocating Engine	Oil Temperature Gauge
Lubricants	Fuel Pressure Gauge
Viscosity	Fuel Flow Meter
Specific Gravity	Carburetor Air Temperature
Oil Additives	Engine Electrical System
Break-In and Preservative Oils	Hour Meter
Gasoline (AVGAS) Additives	Multifunction Display (MFD)
Anti-Detonate Injection	Submodule 10 Practice Questions
Comparison To Jet Fuel	Submodule 10 Practice Answers
Safety Precautions	
Submodule 8 Practice Questions	

16.11 POWERPLANT INSTALLATION11.1	Manifold Pressure Change
Reasons for Removal of Reciprocating Engines	Carburetor Heat/Alternate Air Check
Engine Or Component Lifespan Exceeded 11.1	Pneumatic System Check
Sudden Stoppage	Cylinder Head Temperature
Sudden Reduction in Speed	Exhaust Gas Temperature
Metal Particles In The Oil	Propeller Check
Engine Installation Considerations	Constant RPM Check
Firewalls	Under Speed And Over Speed Check
Cowlings	Static RPM Power Check
Acoustic Panels	Failure To Reach Static RPM
Engine Mounts	Engine Response To Power Changes
Anti-vibration Mounts	Idle Speed And Mixture
Hoses And Tubing	Magneto Switch Ground Out Check
Wiring Looms And Connectors	Inspection Of Engines and Components
Control Cables And Push-Pull Rods	Differential Pressure Tester
Drains	Cold Cylinder Check
Installation Procedures	Borescope
Hoisting And Mounting The Engine	Inspecting Cylinders With The Borescope
Connections And Adjustments	Oil Filter Examination
Submodule 11 Practice Questions	Cylinder Replacement
Submodule 11 Practice Answers	Cylinder Removal
	Cylinder Installation
16.12 ENGINE MONITORING AND GROUND OPERATION 12.1	Submodule 12 Practice Questions
Procedures for Starting and Ground Run-Up12.1	Submodule 12 Practice Answers
Prestart Inspection	
Priming And Starting	16.13 ENGINE STORAGE AND PRESERVATION13.1
Engine Priming	This submodule not required for CAT-A certification 13.1
Normal Engine Start	
Flooded Engine Start	16.14 ALTERNATE PISTON ENGINE CONSTRUCTIONS14.1
Vapor Lock	Motor Construction And Operation
After-start Operation	Rotor
Engine Warm Up	Stators
Power Plant Shutdown	Bearings
Testing, Evaluating, Interpretation, and Troubleshooting 12.3	Windings
Oil Pressure	Inrunner Versus Outrunner
Causes Of Low Oil Pressure	Radial Flux Versus Axial Flux Motors
Causes Of High Oil Pressure	Energy Storage (Batteries)14.2
Causes Of Oil Pressure Fluctuation	Li-ion Battery Operation
Oil Temperature	Thermal Management
Causes Of High Oil Temperature	Control Systems
Causes Of Cool Oil Temperature	Hybrid Systems
Causes Of Oil Temperature Fluctuations	Electric Power Augmentation
Causes Of Inoperative Oil Temperature	Submodule 14 Practice Questions
Fuel Pressure	Submodule 14 Practice Answers
Causes Of High Fuel Pressure	
Causes Of Low Fuel Pressure	Acronym Definitions
Generator/Alternator System	
Causes Of Output Defects	
Magneto Operation	
Low RPM Magneto Check	
High RPM Magneto Check	
Performing A Magneto Drop Check	
Maximum RPM Drop	
RPM Spread	
Rough Magneto Drop	
Hough Magneto Brop	

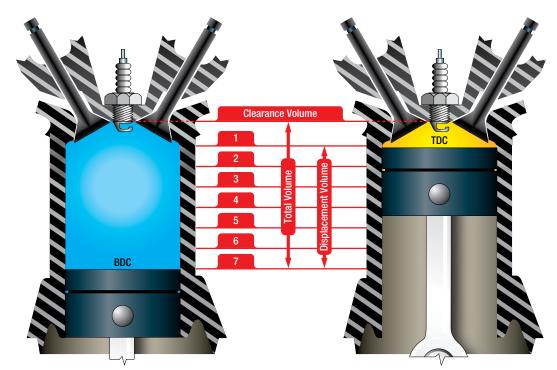


Figure 1-7. Compression ratio.

INLINE ENGINES

An inline engine generally has an even number of cylinders, although some three-cylinder engines have been constructed. This engine may be either liquid cooled or air cooled and has only one crankshaft, which is located either above or below the cylinders. If the engine is designed to operate with the cylinders below the crankshaft, it is called an inverted inline engine.

The inline engine has a small frontal area and is better adapted to streamlining. When mounted with the cylinders in an inverted position, it offers the added advantages of a shorter landing gear and greater pilot visibility. With increase in engine size, the air cooled, inline type offers additional problems to provide proper cooling; therefore, this type of engine is confined to low and medium horsepower engines used in older light aircraft.

OPPOSED OR O-TYPE ENGINES

The opposed-type engine has two banks of cylinders directly opposite each other with a crankshaft in the center as shown in Figure 1-8. The pistons of both cylinder banks are connected to the single crankshaft. Although the engine can be either liquid cooled or air cooled, the air-cooled version is used predominantly in aviation. It is generally mounted with the cylinders in a horizontal position. The opposed-type engine has a low weight-to-horsepower ratio, and its narrow silhouette makes it ideal for horizontal installation on the aircraft wings (twin engine applications). Another advantage is its low vibration characteristics.

Opposed engines are normally designated with the letter "O" and a dash followed by the piston displacement. For example, an O-360 is an opposed engine with 360 cubic inches of displacement. If there is no prefix before the "O", the engine will likely be mounted with the crankshaft in a horizontal position. If the letter "V" precedes the letter "O", (e.g., VO-360), the engine is mounted with the crankshaft in the vertical position. This is

Figure 1-8. Four-cylinder opposed engine.

common with early generation reciprocated powered helicopters. When an opposed engine includes the prefix "I", such as IO-360, the engine is fuel injected. The prefix "T" or "TS" indicates the engine has a turbo-supercharging system. The prefix "G" designates a geared engine. A prefix of "L" is used to show that the engine has left-hand rotation as view from the rear of the engine looking forward.

V TYPE ENGINES

In V type engines, the cylinders are arranged in two inline banks generally set 60° apart. Most of the V type engines have 12 cylinders, which are either liquid cooled or air cooled. The engines are designated by a V followed by a dash and the piston displacement in cubic inches. For example, V-1710. This type of engine was used mostly during the second World War and its use is largely limited to older aircraft.

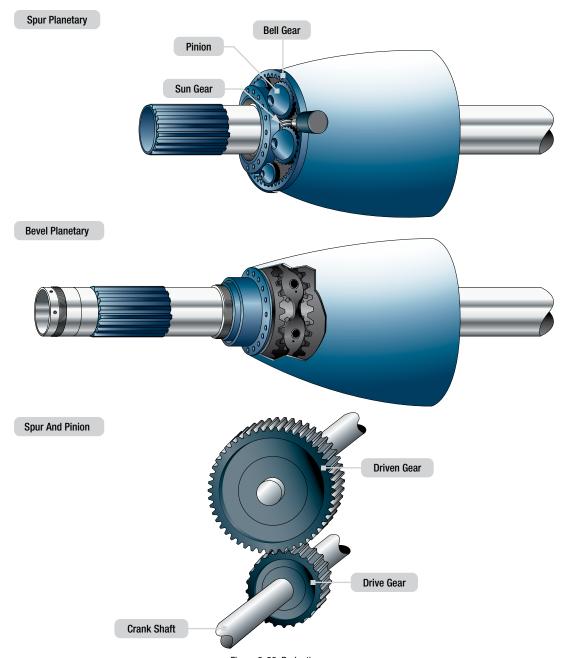
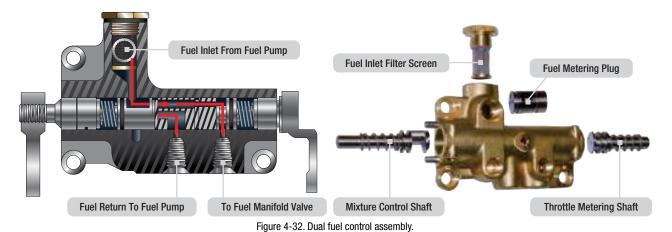


Figure 3-30. Reduction gears.

Figure 3-31. Spur-Type propeller gear reduction system.

Figure 3-32. Tapered propeller shaft.


lapped seat in the body, the fuel lines to the cylinders are closed off. The valve is drilled for passage of fuel from the diaphragm chamber to its base, and a ball valve is installed within the valve. All incoming fuel must pass through a fine screen installed in the diaphragm chamber.

From the fuel injection control valve, fuel is delivered to the fuel manifold valve, which provides a central point for dividing fuel flow to the individual cylinders. In the fuel manifold valve, a diaphragm raises or lowers a plunger valve to open or close the individual cylinder fuel supply ports simultaneously.

FUEL DISCHARGE NOZZLE

The fuel discharge nozzle is located in the cylinder head with its outlet directed into the intake port. The nozzle body contains a drilled central passage with a counterbore at each end. [Figure 4-34] The lower end is used as a chamber for fuel/air mixing before the spray leaves the nozzle. The upper bore contains a removable orifice for calibrating the nozzles. Nozzles are calibrated in several ranges, and all nozzles furnished for one engine are of the same range and are identified by a letter stamped on the hex of the nozzle body.

Drilled radial holes connect the upper counterbore with the outside of the nozzle body. These holes enter the counterbore above the orifice and draw air through a cylindrical screen fitted

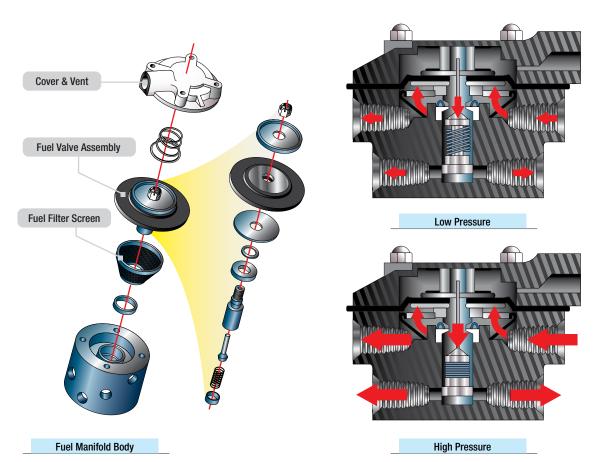


Figure 4-33. Fuel manifold valve assembly.

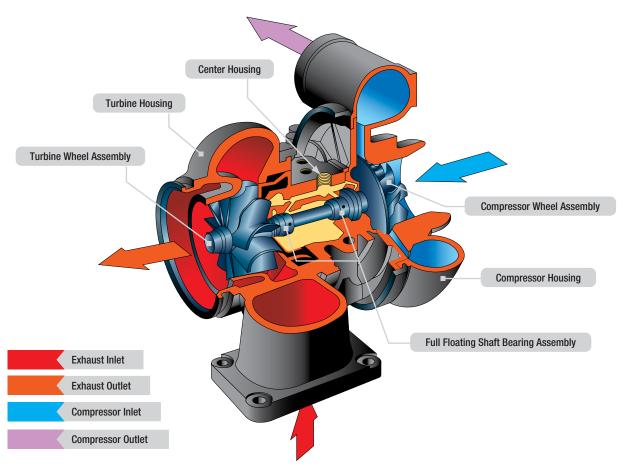


Figure 7-3. A typical turbosupercharger and its main parts.

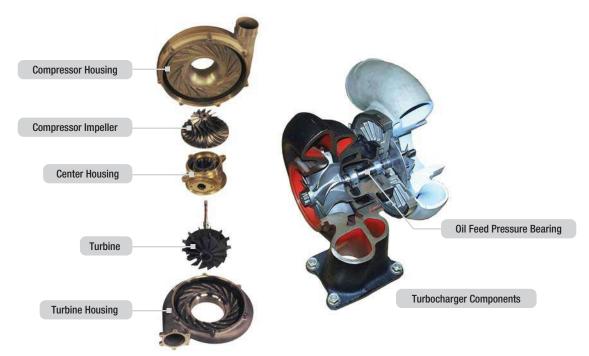


Figure 7-4. Detail examples of the main components of a turbocharger.

exhaust gases directed to the turbine. The waste gate controls the volume of the exhaust gas that is directed onto the turbine and thereby regulates the speed of the rotor (turbine and impeller). [Figure 7-6]

If the waste gate is completely closed, all the exhaust gases are "backed up" and forced through the turbine wheel. If the waste gate is partially closed, a corresponding amount of exhaust gas is directed to the turbine. The exhaust gasses, thus directed, strike the turbine blades, arranged radially around the outer edge of the

LUBRICATION SYSTEM MAINTENANCE PRACTICES

OIL TANK

The oil tank, constructed of welded aluminum, is serviced (filled) through a filler neck located on the tank and equipped with a spring-loaded locking cap. Inside the tank, a weighted, flexible rubber oil hose is mounted so that it is repositioned automatically to ensure oil pickup during all maneuvers. A dipstick guard is welded inside the tank for the protection of the flexible oil hose assembly. During normal flight, the oil tank is vented to the engine

Figure 9-13. Wet-sump system's sump with intake tube running through it.

crankcase by a flexible line at the top of the tank. The location of the oil system components in relation to each other and to the engine is shown in **Figure 9-14**.

Repair of an oil tank usually requires that the tank be removed. The removal and installation procedures normally remain the same regardless of whether the engine is removed or not. First, the oil must be drained. Most light aircraft provide an oil drain similar to that shown in **Figure 9-15**. On some aircraft, the normal ground attitude of the aircraft may prevent the oil tank from draining completely. If the amount of undrained oil is excessive, the aft portion of the tank can be raised slightly after the tank straps have been loosened to complete the drainage.

After disconnecting the oil inlet and vent lines, the scupper drain hose and bonding wire can be removed. [Figure 9-16] The securing straps fitted around the tank can now be removed. [Figure 9-17] Any safety wire securing the clamp must be removed before the clamp can be loosened and the strap disconnected. The tank can now be lifted out of the aircraft. The tank is reinstalled by reversing the sequence used in the tank removal. After installation, the oil tank should be filled to capacity. [Figure 9-18]

After the oil tank has been filled, the engine should be run for at least two minutes. Then, the oil level should be checked and, if necessary, sufficient oil should be added to bring the oil up to the proper level on the dipstick. [Figure 9-19]

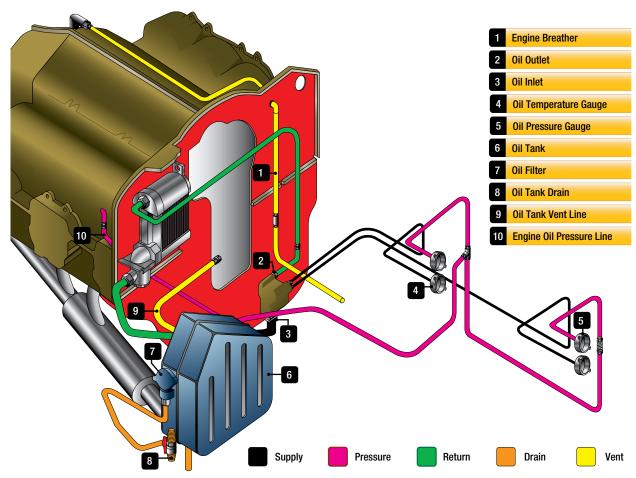


Figure 9-13. Oil system perspective.