

AVIATION MAINTENANCE TECHNICIAN CERTIFICATION SERIES

GAS TURBINE ENGINE

15

Update notices for this book will be available online at www.actechbooks.com/revisions.html
If you would like to be notified when changes occur, please join our mailing list at www.actechbooks.com

VERSION	EFFECTIVE DATE	DESCRIPTION OF REVISION(S)
001	2016.01	Module creation and release.
002	2016.08	Format Updates
003	2017.11	Content updates and subject clarification.
004	2019.01	Fine tuned Submodule content sequence based on Appendix-A. Updated layout and styling.
004.1	2022.06	Inclusion of Measurement Standards for clarification, page iv. Minor appearance and format updates.
004.2	2023.04	Minor appearance and format updates.
005	2024.09	Regulatory update for EASA 2023-989 compliance.

Module was reorganized based upon the EASA 2023-989 subject criteria. Enhancements included in this version 005 are:

- 15.1 Geared turbofan engines topic added.
- 15.3 Turboprop and Turboshaft Engine Inlets topic added.
- 15.4 Multispool designs topic added.
- 15.4 Axial compressor blades, vanes, tips, and roots topic added.
- 15.4 Compressor Rotor; drum, disk, and blisk types topic added.
- 15.4 Combination compressors topic added.
- 15.4 Compressor anti-stall bleed system topic added.
- 15.6 Counter rotating turbines topic added.
- 15.8 Labyrinth Seals topic added.
- 15.9 Alternative and drop-in fuel topic added.
- 15.11 Electronic power augmentation topic added.
- 15.13 Large engine starter generators topic added.
- $15.13 \ \textit{FADEC ignition system on GE CFM 56} topic \ added.$
- 15.15 Power Augmentation replaced with alternative turbine construction.
- All Submodule questions/answers updated.
- Additional author and format enhancements.

GAS TURBINE ENGINE	Ram Recovery
Revision Log iii	Bypass Ratio
Measurement Standards iv	Engine Pressure Ratio
Basic Knowledge Requirements	EPR measurement
Part 66 Basic Knowledge Requirements vi	Pressure, Temperature and Velocity of Exhaust Gas Flow2.7
Table of Contentsix	Engine Ratings
	Flat Ratings
15.1 FUNDAMENTALS1.1	Limitation
Turbine Engine Fundamentals	Influence of Speed, Altitude and Climate
Energy	Submodule 2 Practice Questions
Potential Energy	Submodule 2 Practice Answers
Kinetic Energy	Submodule 2 Tractice Thiswels
Newton's Laws of Motion	15.3 INLETS3.1
Newton's First Law	Compressor Inlet Ducts
Newton's First Law 1.2 Newton's Second Law 1.2	Inlet Configurations
Newton's Third Law. 1.2	Subsonic Flight Inlets
Bernoulli's Principle	Turbofan Engine Inlet Sections
Boyle's & Charles' Law	Turboprop Inlets
The Brayton Cycle	
Force, Work, Power, Motion	Supersonic Flight Inlet Ducts
Force	Variable Geometry Ducts
Work	Bellmouth Compressor Inlets
Power	Compressor Inlet Screens
Torque	Ice Protection
Energy	System Operation
Motion	Regulator Valve
Speed and Velocity	Anti-icing with Electronic Engine Control and FADEC 3.6
Acceleration	Electrothermal Anti-icing Systems
Fundamentals of Operation	Troubleshooting the Anti-icing System
Power and Weight	Submodule 3 Practice Questions
Fuel Economy	Submodule 3 Practice Answers
Durability and Reliability	
Operating Flexibility	15.4 COMPRESSORS4.1
Compactness	Compressor Section4.1
Constructional Arrangement	Bleed Air
Turbojet	Construction Features, Operating Principles, and Applications 4.1
Turbofan Engines	Centrifugal Flow Compressor4.1
Geared Turbofan Engines	Axial Flow Compressors
Geared Turbofan Gearbox	Blades and Vanes
Turboshaft	Tips and Roots4.4
Turboprop	Compressor Rotor – Drum, Disk, or Blisk Type 4.4
Submodule 1 Practice Questions	Centrifugal and Axial Advantages and Disadvantages 4.5
Submodule 1 Practice Answers	Combination Compressors 4.5
	Fan Balance
15.2 ENGINE PERFORMANCE2.1	Operation
Turbine Engine Operating Principles	Cause and Effect of Compressor Stall 4.7
Thrust	Methods of Airflow Control 4.7
Gross (Static) Thrust	Variable Angle Compressor Stator Vanes 4.8
Net Thrust	Bleed Valves
Choked Nozzle Thrust	Compressor Ratio
Thrust Horsepower	Submodule 4 Practice Questions 4.9
Thrust Distribution	Submodule 4 Practice Answers
Resultant Thrust	
Equivalent Shaft HorsePower	
Specific Fuel Consumption	
Engine Efficiencies	

15.5 COMBUSTION SECTION5.1	Submodule 8 Practice Answers	8.6
Constructional Features		
Can Type Combustion Chamber	15.9 LUBRICANTS AND FUELS	9.1
Can-Annular Combustion Chamber	Properties and Specifications of Turbine Engine Fuels	9.1
Annular Combustion Chamber (Through Flow) 5.2	Standard Fuel	
Annular Reverse Flow Combustor	Fuel Volatility	
Operation of Combustion Chambers	Turbine Fuel Types	
Combustion Chamber Performance	Fuel Identification	
Combustion Intensity	Fuel Purity	
Combustion Flameout	Alternate Fuel and Drop-In Fuel	
Submodule 5 Practice Questions	Properties and Specifications of Lubricants	
Submodule 5 Practice Answers	Characteristics of Synthetic Lubricants	
	Synthetic Lubricants	
15.6 TURBINE SECTION	Spectrometric Oil Analysis Programs	
Operation and Characteristics of Turbine Types 6.1	Fuel Additives	
Turbine Types	Anti-ice Additives	
Axial Flow Turbine	Anti-microbial Additives	
Counter Rotating Turbines 6.2	Safety Precautions	
Radial Inflow Turbine	Submodule 9 Practice Questions	
Turbine Section Configuration	Submodule 9 Practice Answers	9.8
Turbine Stages		
Turbine Housing	15.10 LUBRICATION SYSTEMS	
Turbine Blades	Lubrication System Components	
Impulse Configuration	Oil Tanks	
Reaction Configuration	Oil Pumps	
Impulse-Reaction Configuration	Gear Pumps	
Turbine Blade Construction	Gerotor Pumps	
Turbine Blade Tips	Vane Pumps	
Shrouds and Seals	Oil Filters	
Blade Clearance Control	Filter Types	
Stators/Guide Vanes	Filter Bypass Valves	
Turbine Vane and Blade Cooling	Filter Pop-Out Warning	
Turbine Disk/Rotor	Lubrication System Valves	
Blade to Disk Attachment	Oil Pressure Regulating Valve	
Turbine Blade Stress and Creep	Oil Pressure Relief Valve	
Submodule 6 Practice Questions	Check Valves	
Submodule 6 Practice Answers	Oil Jets	
15.7 EXHAUST7.1		
Construction and Principles of Operation	Rotary Air-Oil Separator	
Exhaust Nozzle Shapes	Air Oil Coolers	
Convergent Exhaust Nozzle	Fuel Oil Coolers.	
Convergent-Divergent Exhaust Nozzle	Thermostatic Bypass Valves	
Variable Area Exhaust Nozzles	Scavenge Systems.	
Engine Noise Suppression	Breather Pressurizing System	
Thrust Reverser's	Magnetic Chip Detectors	
Thrust Vectoring	Lubrication System Instrumentation	
Submodule 7 Practice Questions	Typical Lubrication Systems	
Submodule 7 Practice Answers	Dry Sump Systems.	
7.10	Pressure Regulated Lubrication.	
15.8 BEARINGS AND SEALS8.1	Pressure System	
Construction and Principles of Bearings 8.1	Variable Dry Sump Systems	
Construction and Principles of Seals 8.2	Pressure Subsystem	
Labyrinth Seals	Scavenger Subsystem	
Carbon Seals	Breather Subsystems	
Submodule 9 Prestice Overtions 95	•	10.12

Accessory Section	Air Turbine Troubleshooting Guide
Submodule 10 Practice Questions	Turbine Engine Ignition Systems
Submodule 10 Practice Answers	Capacitor Discharge Exciter Unit
	Ignition System — FADEC Engine
15.11 FUEL SYSTEMS 11.1	(GE/SNECMA CFM 56)
General Requirements	Power Supply
Turbine Engine Fuel Metering Systems	Igniter Selection
Hydromechanical Fuel Controls	System Operation
Hydropneumatic Fuel Controls	Igniter Plugs
Hydromechanical/Electronic Fuel Controls	Ignition System Inspection and Maintenance 13.13
FADEC Fuel Control Systems	Inspection
FADEC For An Auxiliary Power Unit	Check System Operation
FADEC for Propulsive Engines	Removal, Maintenance and Installation of Ignition System
Fuel System Operation	Components
Electronic Power Augmentation System	Ignition System Leads
Fuel System Layout and Components	Igniter Plugs
Main Fuel Pumps (Engine Driven)	Maintenance Safety Requirements
Fuel Heater	Starting System Safety Precautions
Fuel Filters	Ignition System Safety
Fuel Spray Nozzles and Manifolds	Submodule 13 Practice Questions
Simplex Fuel Nozzle	Submodule 13 Practice Answers
Duplex Fuel Nozzle	
Airblast Nozzles	15.14 ENGINE INDICATION SYSTEMS14.1
Flow Dividers	Gas Temperature Indicator
Fuel Pressurizing Valves	Exhaust Gas Temperature (EGT) Indicator 14.1
Combustor Drain Valves	Turbine Inlet Temperature Indicator
Fuel Quantity Indicating Units	Engine Pressure Ratio (EPR)
Submodule 11 Practice Questions	Oil Pressure and Temperature
Submodule 11 Practice Answers	Oil Pressure Indicator
	Oil Temperature Indicator
15.12 AIR SYSTEMS12.1	Fuel Pressure and Flow
Turbine Engine Cooling	Fuel Pressure Indication
Zone Cooling	Fuel Flow Indicator
Compressor Cooling	Synchronous Mass Flow Meter
Combustion Chamber Cooling	Motorless Mass Flow Meter
Turbine Section Cooling	Engine Speed
Turbine Disk Cooling	Vibration Monitoring
Guide Vane and Blade Cooling	Torque (Turboprop Engines)
Accessory Cooling	Modern Turbofan Powered Airliner — Engine Instruments
Engine Compartment Ventilation and Cooling	Display
Engine Bleed Air	Submodule 14 Practice Questions
Engine Anti-Icing Control	Submodule 14 Practice Answers
Bearing Chamber Seal	
External Air	15.15 ALTERNATE TURBINE CONSTRUCTIONS15.1
Submodule 12 Practice Questions	Geared Turbofan
Submodule 12 Practice Answers	Variable Fan Blades
	Open Rotor/Propfan
15.13 STARTING AND IGNITION SYSTEMS13.1	Hybrid Turbine Electric Concepts and Electronic Power
Turbine Engine Starters	Augmentation
Cartridge Pneumatic Starters	Future Trends and Development
Electric Starting Systems and Starter Generator	Submodule 15 Practice Questions
Starting Systems	Submodule 15 Practice Answers
Large Engine Starter Generators	
Troubleshooting a Starter Generator Starting System 13.4	15.16 TURBOPROP ENGINES16.1
Air Turbine Starters	Introduction
Starter-Fadec Interface	Gas (Free Turbine) and Gear Coupled Engines 16.1

Gas Coupled (Free Turbine)	Hydraulic Lines
Gear Coupled Turbines	O-Ring Seals
Reduction Gears	Feeders, Connectors and Wiring Looms
Parallel Spur Gears	Control Cables and Rods
Epicyclic Reduction Gears	Lifting Points. 19.9
Fixed Annulus (Ring Gear)	Drains
Rotating Annulus (Ring Gear)	Submodule 19 Practice Questions
Integrated Engine and Propeller Controls 16.4	Submodule 19 Practice Answers
Control Levers	
Single Lever Control	15.20 FIRE PROTECTION SYSTEMS1
Dual Lever Controls	Fire Protection Systems
Power Lever	Components1
Beta Control	Engine Fire Detection Systems
Propeller Lever	Thermal Switch Systems
Control Lock	Thermocouple Systems
OVERSPEED SAFETY DEVICES	Optical Fire Detection Systems
Automatic Drag Limiting System (Double Acting Propeller) 16.6	Infrared Optical Fire Protection
Pitch Locking	Pneumatic Thermal Fire Detection
Propeller Overspeed Governor	Continuous Loop Detector Systems
Turbine Shaft Failure	Fenwal Continuou loop System4
Submodule 16 Practice Questions	Kidde ContinuouS loop System
Submodule 16 Practice Answers	Sensing Element
outhinduic to Fractice Miswels	Combination Fire and Overheat Warning
15.17 TURBOSHAFT ENGINES 17.1	Temperature Trend Indication
Arrangements	System Test
Drive System	
	Dual Loop Systems
Reduction Gearing	Automatic Self Interrogation
Couplings and Drive Systems	Support Tube Mounted Sensing Elements
Control Systems	Fire Detection Control Unit (Fire Detection Card)
Submodule 17 Practice Questions	Fire Zones
Submodule 17 Practice Answers	Engine Fire Extinguishing System
45 40 AUVII IADV DOMED UNITO (ADUO)	Fire Extinguishing Agents
15.18 AUXILIARY POWER UNITS (APUS)18.1	Turbine Engine Ground Fire Protection
Purpose	Containers
Construction	Discharge Valves
Engine Systems	Pressure Indication
Flight Certified APU's	Two Way Check Valve
Operation	Discharge Indicators
APU Control	Red Disk Thermal Indicator8
Crew Control and Monitoring	Yellow Disk Discharge Indicator8
Inspection and Servicing	Fire Switches
Protective Systems	Warning Systems
Submodule 18 Practice Questions	Boeing 777 System Example
Submodule 18 Practice Answers	Detection Systems
	Overheat Detection
15.19 POWERPLANT INSTALLATION19.1	Fire Detection
Powerplant Installations	Nacelle Temperature Recording
Firewalls	Continuous Fault Monitoring
Cowlings	Single/Dual Loop Operation
C Duct Cowls	System Test9
Acoustic Panels	Fire Extinguisher Containers9
Engine and Anti-Vibration Mounts	Squib
Engine Mountings	Engine Fire Switches11
Turbine Vibration Isolation Engine Mounts 19.3	Engine Fire Operation
Hoses and Pipes	APU Fire Detection System
Fuel Lines	APU Fire Warning

Fire Bottle Discharge
Submodule 20 Practice Questions
Submodule 20 Practice Answers
4- 04 FNOWE MONTO DIVIN AND ODDIVID ODER ATION
15.21 ENGINE MONITORING AND GROUND OPERATION21.1
Procedures for Starting and Ground Run-up
Turbine Engine Operation
Ground Operation Engine Fire
Engine Checks
Checking Takeoff Thrust
Ambient Conditions
Engine Shutdown
Turboprop Operation
Interpretation of Power Output and Parameters 21.3
Interpretation for Turboprop Engines
Health and Trend Monitoring
In-flight Recorders
Ground Indicators
Magnetic Plugs or Chip Detectors
Oil Debris Monitoring
Oil Filters. 21.5
Spectrometric Oil Analysis Program
Typical Wear Metals and Additives
Vibration Monitoring
Borescope
Inspection of Engines and Components
Compressor Section
Inspection and Cleaning
Causes of Blade Damage
Blending and Replacement
Combustion Section Inspection
Marking Materials for Combustion Section Parts 21.12
Inspection and Repair of Combustion Chambers 21.12
Fuel Nozzle and Support Assemblies
Turbine Section
Turbine Disk Inspection
Turbine Blade Inspection
Turbine Blade Replacement
Turbine Nozzle Inlet Guide Vane Inspection
Clearances
Exhaust Section
Engine Accessories
Compressor Washing
Foreign Object Damage (FOD)
Engine Design and FOD
Engine and Airframe Designs which Avoid FOD 21.17
Submodule 21 Practice Questions
Submodule 21 Practice Questions 21.79 Submodule 21 Practice Answers 21.20
Submodule 21 Fractice Aliswers
15.22 ENGINE STORAGE AND PRESERVATION22.1
Corrosion Preventive Compounds
Dehydrating Agents
Fuel System Inhibiting
Motoring Method
Pressure Rig Method22.2
Engine Containers

Inspection of Stored Engines	22
Depreservation of Turbine Engines	22.3
Depreservation of Engine Accessories	22.3
Submodule 22 Practice Questions	22.5
Submodule 22 Practice Answers	22.6
A	
Acronym Definitions	A.1

THRUST

Using the formula below, compute the force necessary to accelerate a mass of 50 pounds by 100 ft/sec².

$$F = \frac{MA}{G}$$

$$F = \frac{50 \text{ lb} \times 100 \text{ ft/sec}^2}{32.2 \text{ ft/sec}^2}$$

$$F = \frac{5 000 \text{ lb-ft/sec}^2}{32.2 \text{ ft/sec}^2}$$

F = 155 lb

This illustrates that if the velocity mass per second is increased by 100, the resulting thrust is 155 pounds.

Since the turbojet engine accelerates air, the following formula can be used to determine jet thrust:

$$F = \frac{M_S (V_2 - V_1)}{G}$$

Where:

F = Force in pounds

 M_S = Mass flow in lb/sec

 V_1 = Inlet velocity

 V_2 = Jet velocity (exhaust)

 V_2 - V_1 = Change in velocity; difference between inlet velocity and jet velocity

G = Acceleration of gravity or 32.2 ft/sec²

As an example, to use the formula for changing the velocity of 100 pounds of mass airflow per second from 600 ft/sec to 800 ft/sec, the formula can be applied as follows:

$$F = \frac{100 \text{ lb/sec } (800 \text{ ft/sec} - 600 \text{ ft/sec})}{32.2 \text{ ft/sec}^2}$$

$$F = \frac{20 000 \text{ lb/sec}}{32.2 \text{ ft/sec}^2}$$

As shown by the formula, if the mass airflow per second and the difference in the velocity of the air from the intake to the exhaust are known, it is easy to compute the force necessary to produce the change in the velocity. Therefore, the thrust of the engine must be equal to the force required to accelerate the air mass through the engine. Then, by using the symbol "Fn" for thrust pounds, the formula becomes:

$$Fn = \frac{M_S (V_2 - V_1)}{G}$$

F = 621 lb

Thrust of a gas turbine engine can be increased by two methods: increasing the mass flow of air through the engine or increasing the gas velocity. If the exhaust velocity of the turbojet engine remains constant with respect to the aircraft, the thrust decreases if the speed of the aircraft is increased. This is because V1 increases in value. This does not present a serious problem, however, because as the aircraft speed increases, more air enters the engine, and the engine's exhaust velocity increases. The resultant net thrust is almost constant with increased airspeed.

GROSS (STATIC) THRUST

Gross or static thrust is developed when the engine is on the ground and stationary. Velocity of the airflow entering the engine changes and affects thrust when the aircraft is in flight. [Figure 2-1]

NET THRUST

Net thrust is the actual thrust developed by the engine at any given moment. In order to calculate net thrust the acceleration imparted to the airflow should be known. This actual or true acceleration is the difference in velocity between the incoming and outgoing airflow.

Net Thrust = Gross Thrust - Ram Drag

If the mass airflow per second and the difference in the velocity of the air from the intake to the exhaust are known, you can compute the force necessary to produce the change in the velocity. Therefore, the thrust of the engine must be equal to the force required to accelerate the air mass through the engine.

CHOKED NOZZLE THRUST

Bernoulli's principle (when a fluid has its velocity increased at a given point, the pressure of the stream at that point is less than the rest of the stream) is applied to gas turbine engines through the design of convergent and divergent air ducts. The convergent duct increases velocity and decreases pressure. The divergent duct decreases velocity and increases pressure. The convergent principle is usually used for the exhaust nozzle. The divergent principle is used in the compressor and diffuser where the air is slowing and pressurizing.

When an exhaust nozzle is convergent the velocity of gases leaving the rear of the engine increases. This is desirable for the development of maximum thrust. As the gases approach the speed of sound, the nozzle is said to be choked and choked nozzle thrust is produced. This means the highest efficiency has been obtained in the engine for subsonic flight. However, at the speed of sound, the exhaust gases will produce a shock wave which deteriorates performance. [Figure 2-2]

THRUST HORSEPOWER

Thrust horsepower can be computed when the net thrust and the speed of the airplane are known. One horsepower is equal to 33 000 foot-pounds of work per minute, which is the same as 375 mile/pounds per hour. When an airplane is flying at 375 mph,

Figure 2-1. Gross thrust from a static turbojet engine.

each pound of thrust is the equivalent of one horsepower. When the speed of the airplane is doubled, the amount of horsepower produced by each pound of thrust is also doubled.

THRUST DISTRIBUTION

The thrust developed by an engine can be thought of as being contributed by the various sections of the engine during the continuous combustion cycle. Thrust distribution can be seen by examining the loads produced in a representative turbojet engine. [Figure 2-3]

Note that in the forward part of the engine, due to Newton's second law, loads are in the forward direction. As the gases go throughout the nozzle guide vanes and the turbine, loads shift to the rearward direction. Power is extracted and drag occurs. Drag, which continues as the gases make their way throughout the exhaust section, is a significant force. The resultant thrust is in the forward direction.

Figure 2-2. Variable exhaust ducts on military aircraft create convergent or divergent conditions.

RESULTANT THRUST

In the forward part of the engine, due to Newton's second law, loads are in the forward direction. As the gases go throughout the nozzle guide vanes and the turbine, loads shift to the rearward direction. Power is extracted and drag occurs. Drag, which continues as the gases make their way throughout the exhaust section, is a significant force. The resultant thrust is in the forward direction. The resultant thrust of the engine is the sum of the thrust forces of all the engine main components, including the compressor, combustion chamber, turbine and the exhaust sections.

EQUIVALENT SHAFT HORSEPOWER

A gas turbine engine that delivers power through a shaft to operate something other than a propeller is referred to as a turboshaft engine. Turboshaft engines are similar to turboprop engines. The power take off may be coupled directly to the engine turbine or the shaft may be driven by a free turbine. The free turbine is located downstream of the engine turbine, being connected to the main engine only by the hot stream of gases. This principle is used in the majority of turboshaft engines and used extensively in helicopters and hovercraft.

SPECIFIC FUEL CONSUMPTION

The usual method of describing the fuel economy of aircraft engines is specific fuel consumption. Specific fuel consumption (SFC) is the fuel flow measured in (lbs/hr) divided by thrust (lbs). Equivalent specific fuel consumption is used for turboprop engines and is measured as fuel flow in pounds per hour divided by a turboprop's equivalent shaft horsepower. Comparisons can be made between various engines on this basis. At low speed, reciprocating and turboprop engines have better economy than turbojet or turbofan engines. However, because of losses in propeller efficiency, a turboprop engine's efficiency becomes limited above 400 mph.

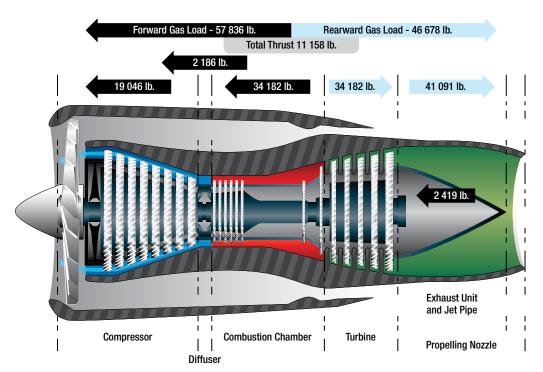


Figure 2-3. Forward and rearward load production on a turbojet engine.

In the interest of fuel economy and aircraft range, the thrust or shaft horsepower per weight should be at its maximum with the fuel consumption as low as possible. Obviously, the more thrust we can obtain per pound of fuel, the more efficient the engine is.

ENGINE EFFICIENCIES

Thermal efficiency is a prime factor in gas turbine performance. It is the ratio of net work produced by the engine to the chemical energy supplied in the form of fuel. The three most important factors affecting the thermal efficiency are turbine inlet temperature, compression ratio, and the component efficiencies of the compressor and turbine. Other factors that affect thermal efficiency are compressor inlet temperature and combustion efficiency. Figure 2-4 shows the effect that changing compression ratio (compressor pressure ratio) has on thermal efficiency when compressor inlet temperature and the component efficiencies of the compressor and turbine remain constant.

The effects that compressor and turbine component efficiencies have on thermal efficiency when turbine and compressor inlet temperatures remain constant are shown in Figure 2-5. In actual operation, the turbine engine exhaust temperature varies directly with turbine inlet temperature at a constant compression ratio.

speed of the aircraft, the altitude of the aircraft, and the ambient temperature. To make the analysis simpler, the combination of these three variables can be represented by a single variable called stagnation density. The power produced by a turbine engine is proportional to the stagnation density at the inlet. The next three illustrations show how changing the density by varying altitude, airspeed, and outside air temperature affects the power level of the engine. Figure 2-7 shows that the thrust output improves rapidly with a reduction in outside air temperature (OAT) at constant altitude, rpm, and

RPM is a direct measure of compression ratio; therefore, at

constant rpm, maximum thermal efficiency can be obtained by

maintaining the highest possible exhaust temperature. Since

engine life is greatly reduced at high turbine inlet temperatures, the operator should not exceed the exhaust temperatures specified

for continuous operation. Figure 2-6 illustrates the effect of

turbine inlet temperature on turbine blade life. In the previous

discussion, it was assumed that the state of the air at the inlet to the

compressor remains constant. Since this is a practical application

of a turbine engine, it becomes necessary to analyze the effect

of varying inlet conditions on the thrust or power produced.

The three principal variables that affect inlet conditions are the

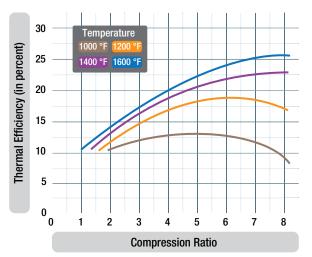


Figure 2-4. The effect of compression ratio on thermal efficiency.

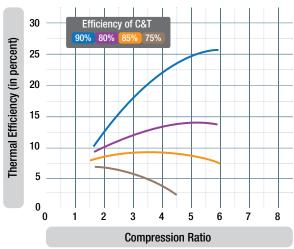


Figure 2-5. Turbine and compressor efficiency vs. thermal efficiency.

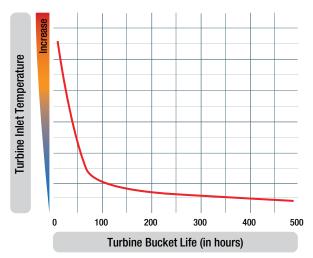


Figure 2-6. Effect of turbine inlet temperature on turbine bucket life.

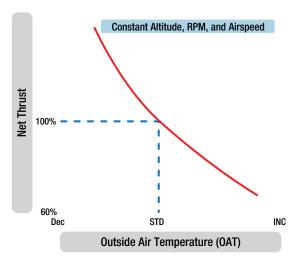


Figure 2-7. Effect of OAT on thrust output

Page 2.4 - Submodule 2 Gas Turbine Engine airspeed. This increase occurs partly because the energy required per pound of airflow to drive the compressor varies directly with the temperature, leaving more energy to develop thrust. In addition, the thrust output increases since the air at reduced temperature has an increased density. The increase in density causes the mass flow through the engine to increase.

The altitude effect on thrust, as shown in Figure 2-8, can also be discussed as a density and temperature effect. In this case, an increase in altitude causes a decrease in pressure and temperature. Since the temperature lapse rate is lower than the pressure lapse rate as altitude is increased, the density is decreased. Although the decreased temperature increases thrust, the effect of decreased density more than offsets the effect of the colder temperature. The net result of increased altitude is a reduction in the thrust output.

The effect of airspeed on the thrust of a gas-turbine engine is shown in Figure 2-9. To explain the airspeed effect, it is necessary to understand first the effect of airspeed on the factors that combine to produce net thrust: specific thrust and engine airflow. Specific thrust is the net thrust in pounds developed per pound of airflow per second. It is the remainder of specific gross thrust minus specific ram drag. As airspeed is increased, ram drag increases rapidly. The exhaust velocity remains relatively constant; thus, the effect of the increase in airspeed results in decreased specific thrust. [Figure 2-9]

In the low-speed range, the specific thrust decreases faster than the airflow increases and causes a decrease in net thrust. As the airspeed increases into the higher range, the airflow increases faster than the specific thrust decreases and causes the net thrust to increase until sonic velocity is reached. The effect of the combination on net thrust is illustrated in **Figure 2-10**.

RAM RECOVERY

A rise in pressure above existing outside atmospheric pressure at the engine inlet, as a result of the forward velocity of an aircraft, is referred to as ram pressure. Since any ram effect causes an increase in compressor entrance pressure over atmospheric, the resulting pressure rise causes an increase in the mass airflow and gas velocity, both of which tend to increase thrust. Although ram effect increases engine thrust, the thrust being produced by the engine decreases for a given throttle setting as the aircraft gains airspeed. Therefore, two opposing trends occur when an aircraft's speed is increased. What actually takes place is the net result of these two different effects. An engine's thrust output temporarily decreases as aircraft speed increases from static, but soon ceases to decrease. Moving toward higher speeds, thrust output begins to increase again due to the increased pressure of ram recovery.

BYPASS RATIO

Turbofan engines can be low bypass or high bypass. The amount of air that is bypassed around the core of the engine determines the bypass ratio. As can be seen in Figure 2-11, the air generally driven by the fan does not pass through the internal working core of the engine. The amount of air flow in lbs/sec from the fan bypass compared to the amount of air that flows through the core of the engine is the bypass ratio.

Bypass ration =
$$\frac{100 \text{ lb/sec flow fan}}{20 \text{ lb/sec flow core}} = 5:1 \text{ bypass ratio}$$

Turbofan engines are generally categorized as high bypass or low bypass in accordance with their bypass ratios. Most transport category aircraft use high bypass engines. Some low-bypass

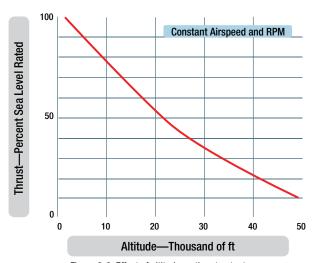


Figure 2-8. Effect of altitude on thrust output.

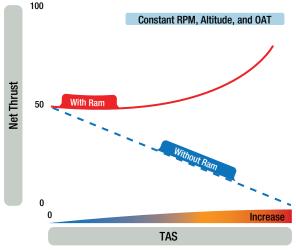


Figure 2-9. Effect of airspeed on net thrust.

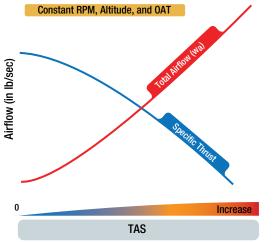


Figure 2-10. Effect of airspeed on specific thrust and total engine airflow.

