

AVIATION MAINTENANCE TECHNICIAN CERTIFICATION SERIES

MATHEMATICS

1

Update notices for this book will be available online at www.actechbooks.com/revisions.html
If you would like to be notified when changes occur, please join our mailing list at www.actechbooks.com

VERSION	EFFECTIVE DATE	DESCRIPTION OF REVISION(S)
001	2016.01	Module creation and release.
002	2020.02	Format update and appearance update.
002.1	2019.10	Cubic feet to cubic meters multiplier changed from 2.831 to 0.028 317. Inclusion of Measurement Standards for clarification.
003	2024.09	Regulatory update for EASA 2023-989 compliance.

Module was reorganized based upon the EASA 2023-989 subject criteria.

| Many figures colorized.

Submodule review questions added.

TABLE OF CONTENTS

MATHEMATICS	Finding a Percentage of a Given Number	1.1
Revision Log iii	Finding What Percentage One Number is of another	
Measurement Standards iv	Finding a Number When a Percentage of it is Known	
Basic Knowledge Requirementsv	Powers and Indices	1.15
Part 66 Basic Knowledge Requirements vi	Squares and Cubes	1.15
Table of Contentsvii	Negative Powers	
	Law of Exponents	
1.1 ARITHMETIC1.1	Powers of Ten	1.13
Mathematics In Aviation Maintenance	Roots	1.15
Whole Numbers	Square Roots	1.13
Addition of Whole Numbers1.1	Cube Roots	1.10
Subtraction of Whole Numbers	Scientific and Engineering Notation	1.10
Multiplication of Whole Numbers	Converting Numbers From Standard Notation to Scientific of	or
Division of Whole Numbers	Engineering Notation	1.10
Factors and Multiples	Converting Numbers From Scientific or Engineering Notation	on to
Lowest Common Multiple (LCM) and Highest Common Factor	Standard Notation	1.10
(HCF)	Addition, Subtraction, Multiplication, Division of Scientific	1.18
Prime Numbers	area	. 1.18
Prime Factors	Rectangle	. 1.18
Lowest Common Multiple using Prime Factors Method 1.4	Square	1.13
Highest Common Factor using Prime Factors Method 1.5	Triangle	
Precedence	Parallelogram	
Use of Variables	Trapezoid	
Reciprocal	Circle	
Positive and Negative Numbers (Signed Numbers) 1.6	Ellipse	1.20
Addition of Positive and Negative Numbers 1.6	Wing area	
Subtraction of Positive and Negative Numbers 1.6	Volume	
Multiplication of Positive and Negative Numbers 1.6	Rectangular Solids	1.2
Division of Positive and Negative Numbers 1.6	Cube	
Fractions	Cylinder	
Finding the Least Common Denominator (LCD) 1.7	Sphere	
Reducing Fractions	Cone	
Mixed Numbers	Weights and Measures	1.23
Addition and Subtraction of Fractions 1.8	Submodule 1 Practice Questions	
Multiplication of Fractions	Submodule 1 Practice Answers	
Division of Fractions	Submodule 1 Practice Questions	1.2
Addition of Mixed Numbers	Submodule 1 Practice Answers	
Subtraction of Mixed Numbers		
The Decimal Number System	1.2 ALGEBRA	2.
Origin and Definition	Section A	2.
Addition of Decimal Numbers	Algebra	2.
Subtraction of Decimal Numbers	Evaluating Simple Algebraic Expressions	
Multiplication of Decimal Numbers 1.10	Addition	2
Division of Decimal Numbers	Subtraction	. 2.2
Rounding Off Decimal Numbers 1.11	Multiplication	. 2.:
Converting Decimal Numbers to Fractions 1.11	Division	. 2.:
Decimal Equivalent Chart	Retaining the Relationship During Manipulation	. 2.:
Ratio	Order of Operations	
Aviation Applications of Ratios	Simple Algebraic Fractions	2
Proportion	Algebraic Equations	
Solving Proportions	Submodule 2 Practice Questions	
Average Value	Submodule 2 Practice Answers	
Percentage		
Expressing a Decimal Number as a Percentage 1.14	1.3 GEOMETRY	3.
Expressing a Percentage as a Decimal Number 1.14	Section B	3.
Expressing a Fraction as a Percentage 1.14	Graphical Representations	. 3.

TABLE OF CONTENTS

Interpreting Graphs and Charts
Graphs With More Than Two Variables
Cartesian Coordinate System
Graphs of Equations and Functions
What is a Function?
Linear Functions and their Graphs
Slope of a Line
y-axis Intercept
Quadratic Functions
In Summary
Submodule 3 Practice Questions
Submodule 3 Practice Answers
Submodule 3 Practice Questions
Submodule 3 Practice Answers
C1

$$\frac{6}{10} = \frac{6+2}{10+2} = \frac{3}{5}$$

MIXED NUMBERS

A mixed number is a combination of a whole number and a fraction. Each of the following are examples of mixed numbers:

$$3\frac{4}{5}$$
, $2\frac{8}{5}$, $6\frac{5}{7}$

Mixed numbers can be written as improper fractions.

Example:

The number 3½ represents 3 full parts and four fifths. Three full parts is equivalent to 15 fifths.

So:

$$3\frac{4}{5} = \frac{15}{5} + \frac{4}{5} = \frac{15+4}{5} = \frac{19}{5}$$

ADDITION AND SUBTRACTION OF FRACTIONS

As previosuly stated, in order to add or subtract fractions, we use a common denominator.

Example:

Find the value of:

$$\frac{1}{5} + \frac{1}{6} + \frac{3}{10}$$

Solution:

The LCD in this case is 30 (list the multiples of 5, 6 and 10 if necessary).

Change each fraction so that its denominator is 30:

$$\frac{1}{5} = \frac{1 \times 6}{5 \times 6} = \frac{6}{30}$$
$$\frac{1}{6} = \frac{1 \times 5}{6 \times 5} = \frac{5}{30}$$
$$\frac{3}{10} = \frac{3 \times 3}{10 \times 3} = \frac{9}{30}$$

So the question becomes:

$$\frac{6}{30} + \frac{5}{30} + \frac{9}{30} = \frac{6+5+9}{30} = \frac{20}{30}$$

It's good practice to reduce the fraction as far as possible.

So our final step is:

$$\frac{20}{30} = \frac{20 + 10}{30 + 10} = \frac{2}{3}$$

Example:

Find the value of:

$$\frac{3}{5} + \frac{2}{7} + \frac{9}{2}$$

Solution:

The LCD of 2, 5 and 7 is 70

Writing each fraction with 70 as its denominator gives:

$$\frac{3}{5} = \frac{3 \times 14}{5 \times 14} = \frac{42}{70}$$

$$\frac{9}{2} = \frac{9 \times 35}{2 \times 35} = \frac{315}{70}$$

$$\frac{2}{7} = \frac{2 \times 10}{7 \times 10} = \frac{20}{70}$$

So the question becomes:

$$\frac{42}{70} + \frac{20}{70} + \frac{315}{70} = \frac{42 + 20 + 315}{70} = \frac{377}{70}$$

The next example involves both addition and subtraction.

Example:

Find the value of:

$$\frac{4}{5} + \frac{7}{3} - \frac{6}{15}$$

And reduce the answer it to its lowest form.

Solution:

The LCD is 15.

$$\frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15}$$
$$\frac{7}{3} = \frac{7 \times 5}{3 \times 5} = \frac{35}{15}$$

Now we calculate:

$$\frac{12}{15} + \frac{35}{15} - \frac{6}{15} = \frac{41}{15}$$

Note that 41/15 is an improper fraction and since 15 divides in to 41 twice with 11 over, we can write:

$$\frac{41}{15} = 2\frac{11}{15}$$

MULTIPLICATION OF FRACTIONS

There is a very simple rule for multiplying fractions: multiply the numerators and multiply the denominators. An example will show how easy this process is.

Example:

Find the value of:

$$\frac{2}{5} \times \frac{3}{7}$$

Solution:

$$\frac{2}{5} \times \frac{3}{7} = \frac{2 \times 3}{5 \times 7} = \frac{6}{35}$$

Example:

Perform the following operation:

$$\frac{4}{7} \times \frac{5}{9}$$

Solution:

$$\frac{4}{7} \times \frac{5}{9} = \frac{4 \times 5}{7 \times 9} = \frac{20}{63}$$

DIVISION OF FRACTIONS

To divide fractions, multiply by the reciprocal of the lower fraction.

Example:

Divide % by 4/3:

$$\left(\frac{7}{8} + \frac{4}{3}\right) = \left(\frac{7}{8} \times \frac{3}{4}\right) = \left(\frac{7 \times 3}{8 \times 4}\right) = \frac{21}{32}$$

ADDITION OF MIXED NUMBERS

To add mixed numbers, add the whole numbers together. Then add the fractions together by finding a common denominator. The final step is to add the sum of the whole numbers to the sum of the fractions for the final result. Note the following example uses feet as the unit of measurement which can commonly result in the use of fractions. 1 foot is equal to 30.49 centimeters.

Example:

The cargo area behind the rear seat of a small airplane can handle solids that are 4¾ feet long. If the rear seats are removed, then 2½ feet is added to the cargo area. What is the total length of the cargo area when the rear seats are removed?

$$4\frac{3}{4} + 2\frac{1}{3} = (4+2) + \left(\frac{3}{4} \times \frac{1}{3}\right) = 6 + \left(\frac{9}{12} \times \frac{4}{12}\right)$$
$$= 6\frac{13}{12} = 7\frac{1}{12} \leftarrow \text{ feet of cargo room}$$

SUBTRACTION OF MIXED NUMBERS

To subtract mixed numbers, find a common denominator for the fractions. Subtract the fractions from each other (*it may be necessary to borrow from the larger whole number when subtracting the fractions*). Subtract the whole numbers from each other. The final step is to combine the final whole number with the final fraction. Note the following example uses inches as the unit of measurement which can commonly result in the use of fractions. 1 inch is equal to 2.54 centimeters.

Example:

What is the length of the grip of the bolt shown in **Figure 1-5?** The overall length of the bolt is 3½ inches, the shank length is 3½ inches, and the threaded portion is ¹⁵/₁₆ inches long. To find the grip, subtract the length of the threaded portion from the length of the shank.

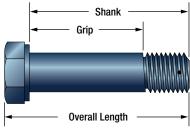


Figure 1-5. Bolt dimensions.

To subtract, start with the fractions. A common denominator must be used. 16 is the LCD. So the problem becomes:

$$3\frac{2}{16} - 1\frac{5}{16}$$
 = grip length in inches

Borrowing will be necessary because 5/16 is larger than 5/16. From the whole number 3, borrow 1, which is actually 16/16. After borrowing, the first mixed number is expressed as 218/16 and the equation is now as follows:

$$2\frac{18}{16} - 1\frac{5}{16}$$
 = grip length in inches

Again, to subtract, start with the fractions:

$$\frac{18}{16} - \frac{5}{16} = \frac{13}{16}$$

Then, subtract the whole numbers:

$$2 - 1 = 1$$

Therefore, the grip length of the bolt is 113/16 inches.

Note that the value for the overall length of the bolt was given in the example, but it was not needed to solve the problem. This type of information is sometimes referred to as a "distractor" because it distracts from the information needed to solve the problem.

THE DECIMAL NUMBER SYSTEM

ORIGIN AND DEFINITION

The number system that we use every day is called the *decimal system*. The prefix in the word decimal is a Latin root for the word "ten." The decimal system probably had its origin in the fact that we have ten fingers (or digits). The decimal system has ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. It is a base 10 system and has been in use for over 5 000 years. A decimal is a number with a decimal point. For example, 0.515, .10, and 462.625 are all decimal numbers. Like whole numbers, decimal numbers also have place value. The place values are based on powers of 10, as shown in **Figure 1-6**.

ADDITION OF DECIMAL NUMBERS

To add decimal numbers, they must first be arranged so that the decimal points are aligned vertically and according to place value. That is, adding tenths with tenths, ones with ones, hundreds with hundreds, and so forth.

Example:

Find the total resistance for the circuit diagram in Figure 1-7. The total resistance of a series circuit is equal to the sum of the individual resistances. To find the total resistance, R_T , the individual resistances are added together.

$$R_T = R_1 + R_2 + R_3$$

 $R_T = 2.34 + 37.5 + .09$

Arrange the resistance values in a vertical column so that the decimal points are aligned and then add.

	Place Value										
	Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones	Tenths	Hundredths	Thousandths	Ten Thousandths
1 623 051	1	6	2	3	0	5	1				
0.053 1							0	0	5	3	1
32.4						3	2	4			

Figure 1-6. Decimal place values.

Therefore, the total resistance, R_T = 39.93 ohms.

SUBTRACTION OF DECIMAL NUMBERS

To subtract decimal numbers, they must first be arranged so that the decimal points are aligned vertically and according to place value. That is, subtracting tenths from tenths, ones from ones, hundreds from hundreds, and so forth.

Example:

Working again with resistance values to be studied in *Module 3*, a series circuit containing two resistors has a total resistance (R_T) of 37.272 ohms. One of the resistors (R_T) has a value of 14.88 ohms. What is the value of the other resistor (R_2)?

$$R_2 = R_T + R_2 = 37.272 - 14.88$$

 $R_2 = 37.272 - 14.88$

Arrange the decimal numbers in a vertical column so that the decimal points are aligned and then subtract.

$$\begin{array}{r}
3 & 7 & 2 & 7 & 2 \\
-1 & 4 & 8 & 8 \\
\hline
2 & 2 & 3 & 9 & 2
\end{array}$$

Therefore, the second resistor, $R_2 = 22.392$ ohms.

MULTIPLICATION OF DECIMAL NUMBERS

To multiply decimal numbers, vertical alignment of the decimal point is not required. Instead, align the numbers to the right in the same way as whole numbers are multiplied (with no regard to the decimal points or place values) and then multiply. The last step is to place the decimal point in the correct place in the answer. To do this, "count" the number of decimal places in each of the numbers, add the total, and then "give" that number of decimal places to the result.

Example:

To multiply 0.2×6.03 , arrange the numbers vertically and align them to the right. Multiply the numbers, ignoring the decimal points for now.

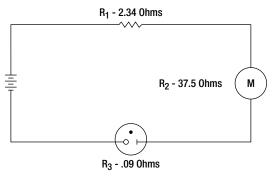


Figure 1-7. Circuit diagram.

$$\begin{bmatrix} |6|0|3\\ \times |0|2\\ 1|2|0|6 \end{bmatrix}$$
 \leftarrow ignore the decimal points

After multiplying the numbers, count the total number of decimal places in both numbers. For this example, 6.03 has 2 decimal places and 0.2 has 1 decimal place. Together there are a total of 3 decimal places. The decimal point for the answer will be placed 3 decimal places from the right. Therefore, the answer is 1.206.

Example:

Using the formula Watts = Amperes × Voltage, what is the wattage of an electric drill that uses 9.45 amperes from a 120 volt source?

Watts = Amperes
$$\times$$
 Voltage
Watts = 9.45×120

Place the values to be multiplied vertically and aligned to the right.

$$9.45$$
 ← 2 decimal places
 120 ← no decimal places
 000
 1890
 945
 1134.00 ← 2 decimal places

After multiplying the numbers, count the total number of decimal places in both numbers. For this example, 9.45 has 2 decimal places and 120 has no decimal place. Together there are 2 decimal places. The decimal point for the answer will be placed 2 decimal places from the right. Therefore, the answer is 1 134.00 watts, or 1 134 watts.

DIVISION OF DECIMAL NUMBERS

Division of decimal numbers is performed the same way as whole numbers, unless the divisor is a decimal.

When the divisor is a decimal, it must be changed to a whole number before dividing. To do this, move the decimal in the divisor to the right until there are no decimal places. At the same time, move the decimal point in the dividend to the right the same number of places. Then divide. The decimal in the quotient will be placed directly above the decimal in the dividend.